首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73548篇
  免费   8530篇
  国内免费   3990篇
电工技术   11982篇
技术理论   14篇
综合类   5387篇
化学工业   8578篇
金属工艺   2529篇
机械仪表   2965篇
建筑科学   10773篇
矿业工程   2039篇
能源动力   12671篇
轻工业   2093篇
水利工程   2148篇
石油天然气   2121篇
武器工业   610篇
无线电   5102篇
一般工业技术   7383篇
冶金工业   3540篇
原子能技术   1254篇
自动化技术   4879篇
  2024年   203篇
  2023年   1637篇
  2022年   2578篇
  2021年   2910篇
  2020年   3092篇
  2019年   2790篇
  2018年   2334篇
  2017年   2794篇
  2016年   3140篇
  2015年   3065篇
  2014年   5192篇
  2013年   4922篇
  2012年   5433篇
  2011年   6115篇
  2010年   4691篇
  2009年   4729篇
  2008年   4305篇
  2007年   4711篇
  2006年   3726篇
  2005年   2896篇
  2004年   2384篇
  2003年   2036篇
  2002年   1803篇
  2001年   1559篇
  2000年   1285篇
  1999年   983篇
  1998年   799篇
  1997年   605篇
  1996年   574篇
  1995年   455篇
  1994年   411篇
  1993年   324篇
  1992年   245篇
  1991年   224篇
  1990年   187篇
  1989年   149篇
  1988年   127篇
  1987年   96篇
  1986年   68篇
  1985年   105篇
  1984年   92篇
  1983年   53篇
  1982年   77篇
  1981年   33篇
  1980年   44篇
  1979年   28篇
  1978年   15篇
  1977年   11篇
  1959年   5篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Despite its shortcomings, fossil-based fuels are still utilized as the main energy source, accounting for about 80% of the world's total energy supply with about one-third of which comes from coal. However, conventional coal-fired power plants emit relatively higher amounts of greenhouse gases, and the derivatives of air pollutants, which necessitates the integration of environmentally benign technologies into the conventional power plants. In the current study, a H2–CO synthesis gas fueled solid oxide fuel cell (SOFC) is integrated to the coal-fired combined cycle along with a concentrated solar energy system for the purpose of promoting the cleaner energy applications in the fossil fuel-based power plants. The underlying motivation of the present study is to propose a novel design for a conventional coal-fired combined cycle without altering its main infrastructure to make its environmentally hazardous nature more ecofriendly. The proposed SOFC integrated coal-fired combined cycle is modeled thermodynamically for different types of coals, namely pet coke, Powder River Basin (PRB) coal, lignite and anthracite using the Engineering Equation Solver (EES) and the Ebsilon software packages. The current results show that the designed hybrid energy system provide higher performance with higher energy and exergy efficiencies ranging from 70.6% to 72.7% energetically and from 35.5% to 43.8% exergetically. In addition, carbon dioxide emissions are reduced varying between 18.31 kg/s and 30.09 kg/s depending on the selected coal type, under the assumption of 10 kg per second fuel inlet.  相似文献   
92.
The realization of dc-dc converters performs a vital function in exploiting renewable energy sources such as solar photovoltaic (PV) and fuel cell applications. This paper demonstrates a single-switch unidirectional buck-boost dc-dc converter for continuous power flow control, excluding the hybrid switched-capacitor. The proposed converter utilizes a limited number of passive components, only four diodes and three inductors required, in addition to six capacitors. The converter can operate at a wide input voltage range with continues input current. The converter has experimented under real-time conditions with 660 W PV system. The obtained efficiency ranges from 93% to 98%. Furthermore, the converter has interfaced with 550 W fuel cell operated under different fuel pressure. The realized efficiency ranges from 91% to 97%. The maximum measured inductance current ripple is limited to under 0.70 A in both scenarios, whereas 0.16 V is the maximum output voltage ripple.  相似文献   
93.
Development of highly efficient and cheap electrocatalysts towards the hydrogen evolution reaction (HER) is of great importance for electrochemical water splitting. Herein, hybrid Cu/NiMo-P nanowires on the copper foam were successfully fabricated via a simple two-step method. The hierarchically structured Cu/NiMo-P exhibits large surface areas and rapid electron transfer ability, leading to enhanced catalytic activity. The as-prepared Cu/NiMo-P electrodes need overpotentials of 34 mV and 130 mV to obtain 10 mA cm?2 for HER in acidic and alkaline solutions, respectively. Density functional theory (DFT) calculations reveal that the Cu/NiMo-P hybrid has a more thermo-neutral hydrogen adsorption free energy and enhanced charge transfer ability as well.  相似文献   
94.
Functionally graded ceramics (FGC), which combine properties of different ceramics in one part, usually have better comprehensive function and structural efficiency. In this study, four different gradient transition Al2O3-ZrO2 FGC samples were prepared by laser directed energy deposition (LDED) method. The results show that there is an obvious interface in direct transition sample. The transition section bears tensile stress caused by difference of thermophysical properties of materials, resulting in significant longitudinal cracks. Element transition in interface region shows a step sharp transition. The direct transition sample shows intergranular fracture and the bonding strength is very low. Gradient transition mode can effectively suppress cracks, and avoid the step transition of microstructure and elements. Elements, microhardness of 25, 20 wt% FGC samples realized a nearly linear smooth transition. The interface fracture of FGC samples changed to transgranular fracture, bonding strength was significantly improved, and the maximum flexural strength reached 160.19 MPa.  相似文献   
95.
Using electric storage systems (ESSs) is known as a viable strategy to mitigate the volatility and intermittency of renewable distributed generators (DGs) in microgrids (MGs). Among different electric storage technologies, battery energy storage (BES) is considered as the best option. In unit commitment (UC) module, the set of committed dispatchable DGs along with their power, power exported to/imported from macrogrid and status and power of ESS units are determined. In this paper, BES degradation is considered in UC formulation and an efficient particle swarm optimisation with quadratic transfer function is proposed for solving UC in BES‐integrated MGs, while the uncertainties of demand, renewable generation and market price are considered and dealt with robust optimisation. UC is formulated as a multi‐objective optimisation problem whose objectives are MG operation cost and BES degradation. The resultant multi‐objective optimisation problem is converted into a single‐objective optimisation problem and the effect of weight factors on MG operation cost and BES lifecycle are investigated. The results show that by consideration of BES degradation in objective function, BES lifecycle increases from 350 to 500 and the minimum depth of charge increases from 5.5% to 34%; however, MG operation cost increases from $8717 to $8910.2. The results also show that by consideration of uncertainties, MG's operation cost increases by 8.22%.  相似文献   
96.
In this study, a new solar-based fuel cell-powered oxygenation and ventilation system is presented for COVID-19 patients. Solar energy is utilized to operate the developed system through photovoltaic panels. The method of water splitting is utilized to generate the required oxygen through the operation of a proton exchange membrane water electrolyser. Moreover, the hydrogen produced during water splitting is utilized as fuel to operate the fuel cell system during low solar availability or the absence of solar irradiation. Transient simulations and thermodynamic analyses of the developed system are performed by accounting for the changes in solar radiation intensities during the year. The daily oxygen generation is found to vary between 170.4 kg/day and 614.2 kg/day during the year. Furthermore, the amount of daily hydrogen production varies between 21.3 kg/day and 76.8 kg/day. The peak oxygen generation rate attains a value of 18.6 g/s. Moreover, the water electrolysis subsystem entails daily exergy destruction in the range of 139.9–529.7 kWh. The maximum efficiencies of the developed system are found to be 14.3% energetically and 13.4% exergetically.  相似文献   
97.
The paper provides an assessment of the current wind energy potential in Ukraine, and discusses developmental prospects for wind-hydrogen power generation in the country. Hydrogen utilization is a highly promising option for Ukraine's energy system, environment, and business. In Ukraine, an optimal way towards clean zero-carbon energy production is through the development of the wind-hydrogen sector. In order to make it possible, the energy potential of industrial hydrogen production and use has to be studied thoroughly.Ukraine possesses huge resources for wind energy supply. At the beginning of 2020, the total installed capacity of Ukrainian wind farms was 1.17 GW. Wind power generation in Ukraine has significant advantages in comparison to the use of traditional sources such as thermal and nuclear energy.In this work, an assessment of the wind resource potential in Ukraine is made via the geographical approach suggested by the authors, and according to the «Methodical guidelines for the assessment of average annual power generation by a wind turbine based on the long-term wind speed observation data». The paper analyses the long-term dynamics of average annual wind speed at 40 Ukrainian weather stations that provide valid data. The parameter for the vertical wind profile model is calculated based on the data reanalysis for 10 m and 50 m altitudes. The capacity factor (CF) for modern wind turbine generators is determined. The CF spatial distribution for an average 3 MW wind turbine and the power generation potential for the wind power plants across the territory of Ukraine are mapped.Based on the wind energy potential assessment, the equivalent possible production of water electrolysis-derived green hydrogen is estimated. The potential average annual production of green hydrogen across the territory of Ukraine is mapped.It is concluded that Ukraine can potentially establish wind power plants with a total capacity of 688 GW on its territory. The average annual electricity production of this system is supposed to reach up to 2174 bln kWh. Thus, it can provide an average annual production of 483 billion Nm3 (43 million tons) of green hydrogen by electrolysis. The social efficiency of investments in wind-hydrogen electricity is presented.  相似文献   
98.
The particle based Discrete Element Method (DEM) can be applied to examine comminution processes. In this study, a DEM framework has been extended to model particle breakage without mass loss. After a breakage event occurs, spherical particles, as often considered in the DEM, are replaced by size reduced spherical fragments. During the following time steps, the fragments grow to their desired sizes, so that the mass loss can be counterbalanced. Previously defined overlaps with adjacent unbroken and broken particles (fragments) as well as walls are allowed. The breakage model has been realized in a parallelized DEM framework because comminution processes are often attributed to large numbers of particles and by parallelization the computational time can be reduced efficiently. An oedometer (one-dimensional compression in axial direction of a confined particle bed) has been modelled to investigate the parallelization efficiency and the influence of the permitted overlaps during the growth process on the growth duration. A simplified roller mill has been considered to examine the applicability of the breakage procedure considering parallelization. The results show that parallelization reduces computational time considerably. The breakage procedure is suitable to model comminution processes involving even densely packed particle systems and is superior to existing approaches.  相似文献   
99.
Energy storage using liquid organic hydrogen carrier (LOHC) is a long-term method to store renewable energy with high hydrogen energy density. This study investigated a simple and low-cost system to produce methylcyclohexane (MCH) from toluene and hydrogen using fluctuating electric power, and developed its control method. In the current system, hydrogen generated by an alkaline water electrolyzer was directly supplied to hydrogenation reactors, where hydrogen purification equipment such as PSA and TSA is not installed to decrease costs. Hydrogen buffer tanks and compressors are not equipped. In order to enable MCH production using fluctuating electricity, a feed-forward toluene supply control method was developed and introduced to the system. The electrolyzer was operated under triangular waves and power generation patterns of photovoltaic cells and produced hydrogen with fluctuating flow rates up to 7.5 Nm3/h. Consequently, relatively high purity of MCH (more than 90% of MCH mole fraction) was successfully produced. Therefore, the simplified system has enough potential to produce MCH using fluctuating renewable electricity.  相似文献   
100.
In 2018, Mishik Airazatovich Kazaryan received the highest award of the International Association for Alternative Energy and Ecology - Order of Antoine de Saint-Exupéry “For Improving the Quality of Life on the Planet of People” (IAAEE) on nominating the Award Committee of the Editorial Board of the International Scientific Journal for Alternative Energy and Ecology (ISJAEE). The award was given for his outstanding contribution to development of alternative energetics and ecology. M.A. Kazaryan's prominent contribution to the development of alternative energetics and ecology is based on his pioneering works in the field of development of methods for producing hydrogen as environmentally friendly safe fuel, as well as works in the field of processing organic compounds by various physical methods. As a part of joint research with colleagues from Lebedev Physical Institute of RAS (LPI), M.A. Kazaryan participated in creation of new methods for producing hydrogen from various chemical compounds. The method of conversion of liquid-phase compounds in plasma discharges under the influence of intensive ultrasonic cavitation occupies a special place. In the course of these works, it is shown that low-temperature plasma initiated in liquid-phase media in discharge between electrodes is able to effectively decompose hydrogen-containing molecules of organic compounds and form gaseous products where the part of hydrogen is more than 90%. Estimations of energy efficiency calculated taking into account hydrogen combustion heat and initial substances, as well as electricity costs, showed an efficiency level of about 60–70% in depending on the composition of the starting mixture. Another notable contribution of M.A. Kazaryan to the development of alternative energetics was the work on the optimization and justification of technological and structural parameters of energy discharge devices based on high-voltage pulse-periodic discharge for creating a reactor for plasmachemical processing of polymer wastes into hydrogen and other valuable compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号